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Abstract. A real space renormalisation group method has been applied to find the critical 
temperature of the Ising model on cubic and octahedral lattices. The result obtained for 
a cubic lattice is in good agreement with that obtained from high-temperature series 
expansion and is better than the results of other papers. Amodification of the transformation 
tested for a simple cubic lattice allowed us to find the critical temperature for an octahedral 
lattice. The latter has not so far been studied by any version of the real space renormalisation 
group method. 

1. Introduction 

The renormalisation transformation ( RT) cannot be constructed within the real space 
renormalisation group ( RSRG) theory unambiguously for different lattice systems. Even 
for systems of the same space symmetry and the same space dimensionality there is, 
to some extent, a flexibility in formulating and choosing the RT. Up to now, a lot of 
different schemes of realisation of the RSRG method have been proposed (Burkhardt 
and van Leeuwen 1982). In practice all these solutions are not equivalent. At the 
present stage of development of the theory, the chosen form of the transformation can 
be checked as to its correctness only retrospectively. One of the earliest realisations 
of RSRG is the transformation proposed by Niemeijer and van Leeuwen (NVL) based 
on the cumulant expansion method (Niemeijer and van Leeuwen 1974). In this version 
the lattice is divided into cells. The intracell part of the Hamiltonian is treated exactly 
and the partition function is expanded in a cumulant expansion of powers of the 
intercell part of the Hamiltonian. In the present paper we describe the application of 
a modified NVL scheme to the studies of critical temperature of three-dimensional Ising 
models on simple cubic and octahedral lattices. 

2. itenormalisation group transformation 

Here we use the renormalisation transformation of the form 

exp %'{S'} = n;[ 1 + Si,  sign( i'th cell)] exp 'de{ S } .  
{S) i' 

The spins Si, form a new lattice isomorphic to the original one. On splitting the 
Hamiltonian %{S} into the zeroth part X,,{S} and the perturbational part V { S } ,  we 
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can write the transformation relation (1 )  as 

xl{S’}= E,+( V{S}),+$(( V2{S}),-( v{S}):) +. . .  
where the average (. . .), is defined by 

X { S ~  II&[ 1 + Si. sign( i’th cell)] expX,{ S}A{S}  
X(S) I I , - f [  1 + Si. sign( i‘th cell)] exp %e,{ S} (A)o = ‘ (3) 

The transformation (1) is unequivocal if the value +1 is ascribed to half of the spins 
for which X,, Sy. = 0 ( n  = 8 or 6) or if the value - 1 is ascribed to the other half of these 
spins (Nauenberg and Nienhuis 1974). The ambiguity of this transformation has been 
removed in different ways by Fields and Fogel (1979, Oitmaa and Barber (1977), Hsu 
and Gunton (1977) and Tatsumi (1978). In our calculations we take into account three 
coupling parameters, namely, magnetic field H, the nearest-neighbour pair interaction 
K ,  and the next-nearest-neighbour pair interaction L. Any possible long-range pair 
couplings as well as any complex (multispin) couplings generated by the transformation 
(2) are omitted. In such approximations the renormalisation group equations can 
generally be written at the fixed point as 

O =  H*(O, K * ,  L*),  K* = K*(O, K*,  L*),  L* = L*(O, K*, L*).  (4) 

Hereafter, the asterisks symbolising the fixed point values of the couplings are, for 
brevity, abandoned. 

3. Simple cubic lattice: Results and critical exponents 

For the case of the simple cubic (sc) lattice equations (4) in the second-order cumulant 
approximation have the following form 

K = ( 16KL + 32L2)f: + (32KL + 64L2)f:f2 + ( 16KL + 32L2)f:f3 

-(64KL+128L2)f:+4(K +2L)f: 

L =  (4K2+16KL+20L2)f:+(12K2+48KL+56L2)f:f2 

+( 12K2 +48KL+52L2)f:f3- (28K2 + 112KL-t 128L2)f; 

+2Lf: 

f a  = n a l z  (a = 1,2,3) 

z = exp( 12K + 12L) + 8  exp(6K +6L) + 12 exp(4K) + 12 exp(4L) 

+24 exp(2K -2L) +24 exp( -2K -2L) + 8  exp( -6K +6L) 

+ 3  exp(4K -4L) +3  exp( -4K -4L) + 12 exp( -4K)  + 12 exp( -4L) 

+exp( - 12K + 12L) +8  ( 5 )  

n ,  = exp( 12K + 12L) + 6  exp(6K +6L) +6  exp(4K) +6 exp(4L) 

+6  exp(2K -2L) +6  exp( -2K -2L) +2 exp( -6K +6L) + 2  

n,  = exp( 12K + 12L) + 4  exp(6K +6L) + 4  exp(4K) + 4  exp(2K -2L) 

-4exp( -2K -2L)-4exp( -6K +6L)+exp(4K-4L) 

- exp( -4K - 4L) - 4 exp( - 4K)  - exp( - 12K + 12L) 
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n3 = exp( 12K + 12L) +4 exp(6K +6L) + 4  exp(4L) -4 exp(2K -2L) 

-4exp( -2K -2L)+4exp(  -6K +6L)-exp(4K -4L)-4exp( -415) 

+exp( - 12K + 12L). 

The fixed point of these relations is found to be K = 0.15 1 95, L = 0.033 18. The 
critical temperature K ,  = J /  kB T, has been calculated by analysing the flow diagram 
in which the fixed point has been reached, starting from the initial values K O =  K, ,  
Lo = 0. In the second order of expansion this leads to the result K ,  = 0.224 01 (while 
K f  = 0.297 80 in the first order). The data for a comparison between our result for T, 
and the results obtained by other methods, are given in table 1, (Tatsumi 1978, 
Onyszkiewicz 1974, 1980, Strieb et al 1963, Yang and Wang 1975) where the value 
resulting from the high-temperature series technique (HTSE) is assumed to be 1.00. It 
is remarkable that RSRG methods yield results that are in far better agreement with the 
HTSE value than the five other representative approaches taken into consideration in 
table 1. Moreover, the RT presented in this paper gives a better result than other RSRG 

transformations based on the cumulant expansion. 

Table 1. Critical temperature results for the simple cubic lattice. 

0.99 
1 .oo 
1.01 
1.33 
1.30 
1.14 
1.14 
1.14 
0.92 
0.93 
0.98 
0.98 
0.99 

LTSE 
HTSE 
RPA 
MFA 
Oguchi approx. 

constant coupling 
HDEM (Onyszkiewicz) 
HDEM (Horwitz and Callen)t 
RSRG (Hsu and Gunton) 
RSRG (Tatsumi) 
RSRG (Oitmaa and Barber) 
RSRG (present paper) 

BPW 

HDEM, high-density expansion method 
LTSE, low-temperature series expansion 
t discontinuous phase transition. 

In th works of Hsu and Gunton as well as of Oitmaa and Barber the calcL.dons 
are performed up to the second order of the expansion while in that of Tatsumi to the 
third order. For the sake of comparison, tabk 2 presents the values of the critical 
indices obtained by them and the results of this paper. The thermal and magnetic 

Table 2. Critical eigenvalues and exponents for the sc lattice. 

AT A H  V t) 

0.638 0.041 series expansion results 
2.362 5.670 0.807 -0.007 Tatsumi (third order) 
2.339 6.324 0.816 -0.322 Oitmaa and Barber 
2.274 5.483 0.844 0.090 Hsu and Gunton 
2.452 6.664 0.773 -0.473 present paper 
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eigenvalues following from the application of this RT, differ from expected values by 
19% and 18%, respectively. This leads to a better value of Y than in other papers, 
and to a worse value of 7. It is to be noted that the same RG approach has been 
utilised for a nearest-neighbour Ising model on a sc lattice with free-surface boundary 
condition (Dunfield and Noolandi 1980) giving better results than other approaches. 

4. Application to the octahedral lattice: Critical temperature calculation 

So far only a cubic lattice has been studied by other authors, using the NVL method 
in the cumulant approximation applied to three-dimensional Ising models. The differ- 
ences in various versions of the transformation (1) rely only on different definitions 
of the weight factor 

P( S’,  S )  = n $[ 1 + Si. sign( i‘th cell)]. (6) 
I ’  

However, any modification of this factor is not in itself sufficient to obtain critical 
temperatures and other non-universal quantities of three-dimensional Ising models on 
lattices of every symmetry. It is rather easy to notice that in most of the three- 
dimensional lattices it is not possible to construct the lattices which would be isomorphic 
to the original one and would be built from all lattice points, i.e., without dropping 
any of spins. As an example let us now consider the octahedral lattice being a sublattice 
of a real lattice composed of the spins of manganese ions in Mn,GaC (figure l (a) ) .  
The geometric centres of the octahedrals do not however form an octahedral lattice. 
Therefore, using the RT of equation (1 )  for the octahedral lattice one cannot construct 
an isomorphic one. In fact the blocks formed in the RG approach consist of the spins 
lying on the walls of the cube, as depicted in figure 1 ( b ) ,  whereas the spins placed at 
the corners of this cube do not belong to any block. Obviously, the ‘redundant’ spins 
cannot be arbitrarily neglected, and thus the RT of equation (1) does not preserve the 
symmetry of the lattice. In order to arrive at a new lattice isomorphic to the original 
one, we avail ourselves of the decimation transformation for these spins. Accordingly, 

(a1 i bl 

Figure 1. Octahedral lattice: ( a )  an elementary cell composed of six spins of manganese 
ions, ( b )  the centres of the six cells i’, j ’ ,  k’,  . . . also form an octahedron. The centres of 
the eight cells at the comers of the cube do not belong to the new lattice. 
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the RT used here for the octahedral lattice consists of two steps, namely, the transforma- 
tion of (1) and then the decimation transformation for ‘redundant’ spins. 

The use of the RT of (1) leads to effective (renormalised) couplings of three types. 
The first one concerns interactions between the spins belonging to new octahedrals, 
the second one refers to the coupling between ‘redundant’ spins, and the last one 
comprises the mixed interactions, i.e., interactions between the spins belonging to new 
octahedrals and the ‘redundant’ spins. These types of couplings are illustrated in figure 
2, where typical graphs obtained in the second-order approximation of expansion (2) 
are shown. The same kind of graph can correspond to these three types of interactions, 
since each graph symbolises an appropriate class of interaction. In such cases the 
proportion of the number of topologically equivalent graphs belonging to the first type 
to those belonging to the two remaining types reads 3 : 1. This enables us to simplify 
the use of the decimation procedure. Applying the same technique as previously for 
sc lattice, we derive the following RG equations at the fixed point: 

I< = $(2K2 +7KL + 5L’)f: +4(2K2 + 5 K L  +3L2)( f 2  - 2f:)f: +2( K + L )  f f 
L = $( K’ + ~ K L  + ~ ’ ) f :  + ? ( K ~  + K L  + ~’)f:f’ +$(K’ + ~ K L  + ~’ ) f : f~  

- 8(2K2 + 3 K L  + 215’) f; + L f f 

f a  = n a l  z ( a  = 1,2,3)  

z=exp(3L+12K)+6exp(L+4K)+12exp(-L)+3exp(3L-4K) 

+6exp(L-4K)+4exp(-3L)  

n ,  =exp(3L+12K)+4exp(L+4K)+exp(3L-4K)+4exp( -L)  

n2 = exp(3L + 12K) + 2 exp( L +4K)  - exp(3 L - 4 K )  - 2 exp( L - 4 K )  

n3 = exp(3L + 12K) + 2 exp( L + 4 K )  - 4 exp( - L )  + 3 exp(3L - 4K)  

+ 2  exp(L-4K)-4exp( -3L). (7) 
where the symbols H, K and L refer to the octahedral lattice and not to the sc lattice 
considered previously. The inverse critical temperature K ,  has been determined to be 
of 0.2860 in the second and 0.2922 in the first order of cumulant expansion. However, 
in the case of the octahedral lattice, relatively accurate determination of the critical 

Y V 

(0 ) ( b )  i c )  

Figure 2. Examples of second-order graphs of the cumulant expansion. ( a )  the case of 
the renormalised coupling between ‘octahedral’ spins, ( b )  the case of the interaction between 
‘redundant’ spins (lattice points 1‘, m’, n’ indicate ‘redundant’ spins), ( c )  the case of 
‘mixed’ coupling (lattice point I‘ stands for ‘redundant’ spin). 
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exponents which should be the same as for the sc lattice, requires more precise 
approximation. Thus, it follows that within the RT applied the character of the lattice 
topology influence the values of the exponents. 

5. Concluding remarks 

RSRG method based on the cumulant expansion has been applied to analyse critical 
behaviour of the Ising model on cubic lattice at the ferromagnetic fixed point. The 
inverse critical temperature K ,  as well as the exponents v and 7 have been calculated. 
The temperature obtained is very close to the expected value. Also, the obtained value 
of v is satisfactory and closer to the expected result than those values reported in other 
papers. However, the value of the critical exponent 7 is found to be unacceptable. 
More accurate calculation of 7 would be possible by including a larger number of 
interactions and by extending the cumulant expansion to an order higher than two. 

The possibility of applying the RSRG method to non-cubic lattices has also been 
shown in this paper. With this purpose the cumulant expansion has been combined 
with decimation method, and with the renormalisation transformation obtained in this 
way, the critical temperature for the octahedral lattice has been calculated. Although 
the simple method applied in this paper does not guarantee satisfactory results of the 
critical exponents, it seems to be efficient in the calculation of the critical temperatures 
of more complicated three-dimensional systems. 
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